Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(5): 6606-6614, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33496567

RESUMO

In response to the extensive utilization of ionic circuits, including in iontronics and wearable devices, a new method for fabricating a hydrogel-based ionic circuit on a polydimethylsiloxane (PDMS) microchip is reported. Prolonged UV/ozone oxidation combined with proper surface functionalizations and a novel microchip bonding method using thiol-epoxy click reaction enable the robust attachment of the photopolymerized hydrogel to the microchannel surface for eventual operation in electrolytes as an ionic circuit. The stretchable ionic diode constructed on the PDMS microchip shows a superior rectification ratio even under tensile stress and long-term storage stability. Furthermore, the combination of the ionic circuit and unique material properties of PDMS allows us to maximize the versatility and diversify the functionalities of the iontronic device, as demonstrated in a pressure-driven ionic switch and chip-integrated ionic regulator. Its iontronic signal transmission mimicking the excitatory and inhibitory synapses also evinces the potential of the hydrogel-based iontronics on the PDMS microchip as developed toward an aqueous neuromimetic information processor while opening up new opportunities for various bioinspired applications.

2.
Proc Natl Acad Sci U S A ; 116(28): 13807-13815, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31221759

RESUMO

As biological signals are mainly based on ion transport, the differences in signal carriers have become a major issue for the intimate communication between electrical devices and biological areas. In this respect, an ionic device which can directly interpret ionic signals from biological systems needs to be designed. Particularly, it is also required to amplify the ionic signals for effective signal processing, since the amount of ions acquired from biological systems is very small. Here, we report the signal amplification in ionic systems as well as sensing through the modified design of polyelectrolyte hydrogel-based ionic diodes. By designing an open-junction structure, ionic signals from the external environment can be directly transmitted to an ionic diode. Moreover, the minute ionic signals injected into the devices can also be amplified to a large amount of ions. The signal transduction mechanism of the ion-to-ion amplification is suggested and clearly verified by revealing the generation of breakdown ionic currents during an ion injection. Subsequently, various methods for enhancing the amplification are suggested.

3.
Sci Rep ; 9(1): 7872, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133709

RESUMO

Amorphous oxide semiconductor (AOS)-based Schottky diodes have been utilized for selectors in crossbar array memories to improve cell-to-cell uniformity with a low-temperature process. However, thermal instability at interfaces between the AOSs and metal electrodes can be a critical issue for the implementation of reliable Schottky diodes. Under post-fabrication annealing, an excessive redox reaction at the ohmic interface can affect the bulk region of the AOSs, inducing an electrical breakdown of the device. Additionally, structural relaxation (SR) of the AOSs can increase the doping concentration at the Schottky interface, which results in a degradation of the rectifying performance. Here, we improved the thermal stability at AOS/metal interfaces by regulating the oxygen vacancy (VO) concentration at both sides of the contact. For a stable quasi-ohmic contact, a Cu-Mn alloy was introduced instead of a single component reactive metal. As Mn only takes up O in amorphous In-Ga-Zn-O (a-IGZO), excessive VO generation in bulk region of a-IGZO can be prevented. At the Schottky interfaces, the barrier characteristics were not degraded by thermal annealing as the Ga concentration in a-IGZO increased. Ga not only reduces the inherent VO concentration but also retards SR, thereby suppressing tunneling conduction and enhancing the thermal stability of devices.

4.
ACS Appl Mater Interfaces ; 11(10): 10099-10107, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30788956

RESUMO

According to the recent growth in interest of human-friendly devices, soft conductors, which are conductive materials with an inherent compliance, must have a low electrical strain sensitivity under large deformation conditions, environmental stability in water, and reliability even for complex and repeated deformation, as well as nontoxic characteristics. In this study, we fabricated a poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)/polyacrylamide nanoweb that satisfies all of the above requirements through a web microstructure with entangled conductive nanofibers. Since the web structure can be deformed through structural alignment, the conductive path is stably maintained during deformation, which makes it highly conductive, electrically stable, and electrically strain insensitive. The tangled nanofibers are composed of PEDOT:PSS as a conductive component and polyacrylamide as a binding material, so it is nontoxic and has the soft properties of the material itself, which can withstand large deformations. Additionally, the material has a good electrical stability against repeated deformation so that the resistance increased by only 13% after a 50% strain was repeated 1000 times. Notably, electrical instabilities such as noise and hysteresis were not evident during the repeated deformations. Finally, the nanoweb has excellent swelling resistance and maintains its mechanical and electrical characteristics in water.

5.
Forensic Sci Int Genet ; 38: 1-8, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300865

RESUMO

Many studies have reported age-associated DNA methylation changes and age-predictive models in various tissues and body fluids. Although age-associated DNA methylation changes can be tissue-specific, a multi-tissue age predictor that is applicable to various tissues and body fluids with considerable prediction accuracy might be valuable. In this study, DNA methylation at 5 CpG sites from the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes were investigated in 448 samples from blood, saliva, and buccal swabs. A multiplex methylation SNaPshot assay was developed to measure DNA methylation simultaneously at the 5 CpG sites. Among the 5 CpG sites, 3 CpG sites in the ELOVL2, KLF14 and TRIM59 genes demonstrated strong correlation between DNA methylation and age in all 3 sample types. Age prediction models built separately for each sample type using the DNA methylation values at the 5 CpG sites showed high prediction accuracy with a Mean Absolute Deviation from the chronological age (MAD) of 3.478 years in blood, 3.552 years in saliva and 4.293 years in buccal swab samples. A tissue-combined model constructed with 300 training samples including 100 samples from each blood, saliva and buccal swab samples demonstrated a very strong correlation between predicted and chronological ages (r = 0.937) and a high prediction accuracy with a MAD of 3.844 years in the 148 independent test set samples of 50 blood, 50 saliva and 48 buccal swab samples. Although more validation might be needed, the tissue-combined model's prediction accuracies in each sample type were very much similar to those obtained from each tissue-specific model. The multiplex methylation SNaPshot assay and the age prediction models in our study would be useful in forensic analysis, which frequently involves DNA from blood, saliva, and buccal swab samples.


Assuntos
Envelhecimento/genética , Análise Química do Sangue , Metilação de DNA , Mucosa Bucal/química , Saliva/química , Acetiltransferases/genética , Adolescente , Adulto , Idoso , Ilhas de CpG/genética , Elongases de Ácidos Graxos , Genética Forense , Marcadores Genéticos , Técnicas de Genotipagem/instrumentação , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Fatores de Transcrição Kruppel-Like , Proteínas com Homeodomínio LIM/genética , Proteínas de Membrana/genética , Metaloproteínas/genética , Pessoa de Meia-Idade , Proteínas Musculares/genética , Análise de Sequência de DNA , Fatores de Transcrição Sp/genética , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido , Adulto Jovem
6.
Sci Rep ; 6: 26416, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27194475

RESUMO

We devised anodized aluminium oxide (AAO) frame-supported polyelectrolytic ion-exchange membranes for the application of electrical power generation systems where salinity differences are present. A series of polyelectrolytic AAO membranes (PAMs) were fabricated as a function of concentration of monomers and cross-linkers. Of the ion-selective PAMs as made, the membranes from the most concentrated monomers and cross-linkers, C-PAM100 and A-PAM100, showed the highest area resistances and permselectivities (the resistances were 4.9 and 2.9 Ω · cm(2), the permseletivities for C-PAM100 and A-PAM100 were 99 and 89%, respectively). The measured resistances and permselectivities allowed the power density to be estimated for C-PAM100 and A-PAM100, 3.5 W/m(2), and experimentally obtained power density using a reverse electrodialysis (RED) stack was 17.3 mW/m(2). In addition, we investigated the influence of an AAO framework on a membrane resistance by comparing the PAMs with polyelectrolyte-stuffed capillaries, revealing that the resistance of the PAM has plenty of potential to be further reduced by optimizing the AAO pore spaces.

7.
Sci Rep ; 6: 25332, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27125340

RESUMO

UNLABELLED: Understanding the mechanism of the strain-dependent conductivity change in polymers in stretched conditions is important. We observed a strain-induced growth of the conductive regions of PEDOT: PSS films, induced by a coalescence of conductive PEDOT-rich cores. This growth due to coalescence leads to a gradual decrease in the electrical resistivity up to 95%, independent of the thickness of the PEDOT: PSS films. The primary mechanism for the evolution of the PEDOT-rich cores proceeds by the cores growing larger as they consuming relatively smaller cores. This process is caused by a strain-induced local rearrangement of PEDOT segments in the vicinity of PSS shells around the cores and also changes the chemical environment in PEDOT, induced by the electron-withdrawing effects around the PEDOT chains. The strain-induced growth mechanism is beneficial to understanding the phenomenon of polymeric chain rearrangement in mechanical deformation and to modulating the electrical conductivity for practical applications.

8.
Adv Mater ; 28(8): 1636-43, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26684678

RESUMO

Organogel-based stretchable electronic conductors exhibit electrical conduction even under a large stretching deformation of 300% without electrochemical reactions at DC voltages. The resistance change with stretching is almost strain-insensitive up to 50% strain and it remains at each deformation up to 1000 fatigue cycle. The polymeric conductive paths of PEDOT: PSS are well preserved during the mechanical deformation.

11.
Korean J Orthod ; 43(3): 147-58, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23814710

RESUMO

This article describes the orthodontic treatment of a 31-year-old Korean female patient with gummy smile and crowding. The patient showed excessive gingival display in both the anterior and posterior areas and a large difference in gingival heights between the anterior and posterior teeth in the maxilla. To correct the gummy smile, we elected to intrude the entire maxillary dentition instead of focusing only on the maxillary anterior teeth. Alignment and leveling were performed, and a midpalatal absolute anchorage system as well as a modified lingual arch was designed to achieve posterosuperior movement of the entire upper dentition. The active treatment period was 18 months. The gummy smile and crowding were corrected, and the results were stable at 21 months post-treatment.

14.
Angle Orthod ; 78(1): 167-75, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18193963

RESUMO

Recently, many studies have been reported on distal molar movement using temporary anchorage devices. However, the side effects of distal movement, such as distal tipping, rotation, or extrusion, are still unsolved. This article describes the use of the lever-arm and mini-implant system for controlled distal movement of maxillary molars and two clinical cases in which patients were treated with this system. Mini implants are needed to control the point of force application in the posterior area with no anchorage loss. When the length of the lever arm and the position of the mini implant are adjusted, the desired line of action of the distal force is determined with respect to the center of resistance of maxillary molars. The lever-arm and mini-implant system is useful not only for absolute anchorage, but also for three-dimensional control during distal movement of the upper molars.


Assuntos
Maxila , Dente Molar/patologia , Procedimentos de Ancoragem Ortodôntica/instrumentação , Desenho de Aparelho Ortodôntico , Técnicas de Movimentação Dentária/instrumentação , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Má Oclusão Classe II de Angle/terapia , Mordida Aberta/terapia , Técnica de Expansão Palatina/instrumentação , Estresse Mecânico , Técnicas de Movimentação Dentária/métodos , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...